Posts tagged ‘hollow glass microspheres’

The composites industry is an application of microspheres that consumes the greatest amount by volume. Many of these microspheres are lightweight hollow glass or ceramic spheres that are added to binder material to create products with the lowest possible weight.

Integration of microspheres into composite parts increases the ease of applications and mixing. The ball-bearing effect improves flow and lowers the viscosity of resin mixes, which significantly simplifies processability, resulting in easier machinability, faster cycle times and cost savings. The smooth, spherical shape of microspheres allows even dispersion and packing efficiency. Microspheres can be used in most processing methods for thermoset and thermoplastic polymers such as extrusion and injection molding. They blend easily into compounds, which makes them adaptable to a variety of production processes, including spraying and casting.

Hollow glass microspheres provide weight reduction and resin extension in aerospace, automotive, construction, explosive, marine, coating, abrasive, film industry and sporting goods applications.

Flotation Devices and Underwater Vessels
Microspheres are widely used in the fiber-reinforced polyester industry to improve the manufacturing process for shower stalls, boats, some types of flotation devices and underwater vessels, offering the benefits of deep-sea buoyancy and subsea thermal insulation. Syntactic pipe insulation and buoyancy foams made with hollow microspheres are used in a growing number of deep-water recovery programs.

Automotive, Building, Marine and Aerospace
The automotive, building, marine and aerospace industries require the lowest possible weight for materials. The makers of syntactic foams require the controlled, closed cells that only microspheres can offer. Due to their physical characteristics, most microspheres are extremely good insulators, reflect and dissipate heat very effectively, and are also fire resistant. As a result, many fire-retardant materials and roof coatings are made using ceramic or glass microspheres. Microspheres are also used in acoustic/dielectric sensors and aerospace adhesives.

Oil and Gas
Microspheres are used in oil and gas production as an additive for lightweight cement slurries and allow reduction of cement slurry density without increasing the water content.

Paints and Coatings
Coatings containing microspheres are stronger and more durable than other coatings. Because hollow spheres lower the density of materials to which they are added, a gallon of paint or coating made with hollow microspheres will weigh less than the same product
made without them. Lower-density coatings are cheaper to produce and ship and easier to carry up ladders. Next-generation microspheres used in paint and coating applications enhance weatherability and durability of components and finished products.

Hollow Glass Microspheres, also called bubbles, microbubbles, or microballoons, are typically made out of borosilicate-sodalime glass blend formulation and provide the benefits of low density, high heat and chemical resistance. The walls of glass microspheres are rigid and typically have the thickness of 10% of the diameter of the sphere. Spherical microparticles are currently available in a broad range of densities from as low as 0.06g/c3 to as high as 0.80g/c3 and sizes from 5um to 180um in diameter. The crush strength of the hollow spheres is determined by the thickness of the walls and, as expected, the higher the sphere density the higher the crush strength. The lightweight hollow glass spheres are chemically stable, noncombustible, nonporous, and have excellent water resistance.

Hollow glass microspheres are also offered with conductive coatings. Conductive coating with optimized thickness provides spherical particles with good conductivity and shielding properties while maintaining the weight-saving benefit associated with hollow-core low-density materials. These conductive microbubbles are suitable for use in military applications, biotechnology, medical devices, electronics, and other specialty industries.

CATEGORIES
Hollow Glass Microspheres (Uncoated)
Hollow glass microspheres are light-weight, chemically stable materials, frequently used as functional additives to reduce weight (density) and improve buoyancy of materials.
Silver-Coated Hollow Glass Microspheres (Conductive)
Conductive silver coating on hollow glass microsheres offers benefits in catalysts, laser fusion targets, and electrically conducting bond line spacers.
Nickel-Plated Hollow Glass Microspheres (Conductive)
Conductive nickel-plated hollow microspheres are often used as a lightweight, lower cost, electrically conductive additive and an alternative option to silver.
Zinc Oxide (ZnO) Coated Hollow Glass Microspheres
Zinc oxide (ZnO) coating offers numerous advantages as a semiconductor, as well as high refractive index, high thermal conductivity, binding, antibacterial and UV-protection properties.
Photospheres™ – TiO2-Coated Hollow Glass Microspheres (Photocatalytic)
Glass microspheres coated with TiO2 in anatase form exhibit photocatalytic activity under ultraviolet (UV) irradiation. Excellent photocatalytic activity against a range of relevant organic pollutants and effective in reducing gaseous pollutants.
Isospheres™- TiO2-Coated Hollow Glass Microspheres (Light Scattering)
Hollow glass microspheres coated with rutile titanium dioxide (TiO2) and are designed to be high quality seeding material with excellent light scattering properties for high temperature applications in the experimental fluid dynamics and particle image velocimetry (PIV) industry.

Application areas of using hollow glass microspheres:

Bowling balls, cast polyester, cast synthetic foam, caulk, explosives, polyester putty, sealants, shallow water pipe insulation, potting compounds, tooling boards, spackling compound, SMC/ BMC, Deep sea pipe insulation, Golf Balls, RIM, Pultrusion, sprayable PVC Plastisol sealer, Sprayable syntactic foam, spray-up/lay-up, and Thermoplastics masterbatches.

The hollow glass microspheres are extremely versatile and are used as additives in an astonishing variety of products. For example, they reduce the density of body fillers to weight of plastic parts to underwater deep pipe insulation.

In Indian automotive industry using hollow glass microsphere could be an added advantage in plastic parts of the car. These tiny bubbles help reduce vehicle weight – improving fuel efficiency, so its all about fuel efficient car.

The hollow glass microspheres can be formulated into quick-drying, low-shrinkage, spackling and other construction materials. And they provide a wide range of additional benefits in applications ranging from sporting goods to solar reflective paint.

This article comes from geoconproducts edit released

With a series of alternative materials and rapid development, especially in the application of high performance glass beads to reduce thermal conductivity and reduce deep-sea oil and gas recovery feasible.With the deep undersea oil pipeline requires the development of deeper and more to geographic location requirements increase. When depth and stressful environment, usually filled with glass beads apply foam insulation, which makes deep-sea pipeline to extend long 50km or farther underwater.

Currently the use of hollow glass microspheres filled polymer synthesis deep strong buoyancy material has been applied in foreign countries.According to reports, the current foreign developed high compressive strength, low density buoyancy material is an epoxy binder, filled with hollow glass beads and a large number of additives, such as lightweight composite buoyant material used in deep-sea submarine, in the deep seaIt can withstand high pressure, and in the basic conditions for a long time does not absorb moisture.Although China has been carried out in this field for many years of research, but in terms of diving with buoyant material properties are still lagging behind the international advanced level.

Sinosteel Maanshan Institute of Mining Research Co.,Ltd established in 1963, it belongs to one of the global top 500–Sinosteel Group.So far, we have outstandingly completed a series of major national scientific and technological tasks and 118 Science and technology support projects.Meanwhile,we complete 2 National important technological equipment localization projects, 22 state-level new products & National torch plan projects and more than 12000 projects authorized by key unit in Province and mineral enterprises. Nowadays, we have been awarded more than 500 National & provincial Prizes for Progress in Science and Technology and 102 patents.

 

 

There filling performance energy efficient, low low oil, density, added 5% (wt) will be able to make the finished product increased by 25% to 35%, so as not to increase or even reduce the cost per unit volume of the coating. Hollow glass beads particles confined hollow spheres added to the coating formation of many independent microscopic cavity insulation, thus greatly improving the coating on the thermal and sound insulation, play a very good thermal insulation and noise reduction effect. The coating has a more waterproof, anti-fouling, corrosion resistance. When the surface of the hollow glass microspheres are chemically inert chemical resistance, as the film tightly packed particles of glass beads, the formation of low porosity, the coating formed on the surface of the moisture and corrosion caused by the blocking effect of ions protective film, played well protective effect.

Hollow glass beads spherical structure makes the impact force and stress have a good dispersion, added to the paint can well improve the resistance to external impact properties of the film, and the coating can be reduced due to thermal expansion and contraction the stress cracking.

Filling the hollow glass microspheres can effectively reduce other expensive fillers and pigments dosage (compare with titanium dioxide, but its volume costs beads 1/5) effectively enhance the adhesion of the coating. Low oil absorption properties of glass beads so that more resin can participate in film formation, so that the adhesion of the coating increased 3 to 4 times.

 

Improving flow properties.

Hollow glass microsphere is a tiny sphere with high ball-type rate. Its ball-bearing effect can improve its mobility and reduce the viscosity and internal stress of resin mixture. Therefore, during processing, less heat is produced in composite materials so as to prevent inadequate lubrication and partial thermal decomposition. It is more likely to extrude when molding, which can not only reduce defects in products, but also improve the production efficiency by 15% -20%.

More substitute ability for resin.

Hollow glass microspheres occupy less surface area, low oil-absorption rate, and evenly disperse in mixture. Its easy compression and integration permit high filler loadings. It significantly reduces the consumption of resins, increases the amount of filler, and effectively reduces VOC indicators, and costs as well.

Low shrinkage and warpage.

Hollow glass microspheres have the feature of isotropism and high-filling, hence the dimensional stability of the product will be very high and it will reduce the shrinkage and warpage. With an appropriate filling ratio, the toughness of the products, impact-resistance and surface hardness can be significantly improved.

More economical by volume.

The density of high-performance hollow glass microspheres is only a fraction of that of the resin. A small amount of hollow glass microspheres will be able to replace heavier materials. When considering the cost per unit volume, rather than cost per unit weight, high-performance hollow glass microspheres can significantly reduce costs.

Adjusting the density of products .

The density of hollow glass microspheres is usually 0.20 ~ 0.60g/cm3, and the density of mineral filler is generally around 2.7 ~ 4.4 g/cm3 (The data adopted is the true particle density). In order to obtain the equal size, 14 kilograms or more of talc must be used to obtain the same effect of 1 kg of hollow glass microsphere. Hence the desired ideal density can be obtained by adding appropriate proportions of hollow glass microspheres.