Archive for the ‘Hollow Glass Microspheres’ Category

The production of hollow glass microspheres is part of an ongoing research and development program started in 1974. And aimed at developing a method for mass producing glass fuel containers for use in inertial confinement fusion (ICF) experiments. Several previous reports have described the development of the liquiddroplet technique for the production of hollow glass microspheres.

In this paper, ive review previous data along with tie results from our more recent studies to present a detailed picture of the preparation method and properties of the hollow glass microspheres. The production of the high-quality hollow glass microspheres needed for laser fusion targets requires us to optimize a number of processing parameters.

In the past, we used a largely empirical approach to determine the proper operating conditions. Although this approach was successful, it was also time consuming and manpower intensive. To help guide and interpret our present experimental work, we have developed a simple, onedimensional (1-D) model to simulate the sphere formation process.

The model has been used to quantify the effects of several key process variables such as the column temperature profile, purge-^as composition, droplet size and composition, and glass film properties.

This article comes from osti edit released

Imagine lighter-weight vehicles that can travel farther on less fuel. More efficient ways to drill for oil and insulate deepsea pipelines. Paint that helps keep homes cooler on hot, sunny days. In all these ways and more, hollow glass microspheres are helping a wide range of industrial sectors solve design challenges and reach new levels of performance and productivity.

Hollow glass microspheres are high-strength, low-density hollow glass microspheres made from soda-lime borosilicate glass. They are nonporous, chemically stable and provide excellent water and oil resistance.

Strong enough to survive processing, they can be incorporated into a wide range of polymers for density reduction. And the benefits of hollow glass microspheres go far beyond lightweighting: the inherent properties of these microspheres provide a number of unique performance and processing advantages.

Hollow glass microspheres products offer formulators flexibility in polymer composites. The addition of hollow glass microspheres to fiberglass reinforced plastics (FRP), epoxy, compounds, and urethane castings can provide weight reduction cost savings and improved impact resistance. Insulating features of hollow glass microspheres also work to the chemists’ advantage in thermal shock and heat transfer areas. Sphere One’s hollow glass microspheres are your best choice when you need lightweight filler.

A range of products with densities from 0.14 to 0.80 g/cm3 provides choices to best fit mixing and target weight requirements.

When used in polymer concrete, hollow glass microspheres provide a cost effective alternative without degrading physical properties.

Hollow glass microspheres are used to enhance performance and reduce viscosity in paints and coatings and as lightweight additives in plastic parts. They are chemically inert, non-porous, and have very low oil absorption.

Applications:

Adhesives, Auto Body Filler, Caulk, Coatings, Cultured Marble, Epoxy, Putty, Sealants.

Syntactic foams (SF) with robust impermeable hollow glass microspheres as density adjuster have drawn much attention because of their easy-tailored low density, high mechanical strength and excellent performance especially when used in high pressure aqueous environment.

In this work, specially fabricated hollow glass microspheres with high strength to weight ratio were employed for the controlled fabrication of high strength lightweight syntactic foams. Special attention has been paid on the effects of surface physicochemical status modification of the HSMs on the mechanical strength and mechanical performance evolution in various external environments. It is found that the surface physicochemical status modification of the hollow glass microspheres contributes more on the enhancement of the fracture toughness compared with that of the compressive strength.

Moreover, compared with those of the pristine SF, the mechanical strength of the SF samples after different environmental exposure display a more remarkable improvement due to the surface physicochemical status modification of the HSMs, indicating an enhanced environmental stability. This work provides an additional insight to the mechanical strength and aging resistance control of SF, which holds the potential to be extended to the property improvement of similar composites with various types of silicate or glass fillers.

This article comes from sciencedirect edit released

Hollow Glass Microspheres (HGMS) are near perfect spherical shapes of thin walled glass bubbles that are approximately 50 microns in size. The glass type is amorphous and can come low purity or high purity (Trelleborg) grades.

The key properties of low density HGMS are their light weight and strength. Incorporating them into buoyancy products allows Remotely Operated Vehicle (ROV), or Autonomous Underwater Vehicle (AUV) manufacturers to provide buoyancy to vehicles without the use of cumbersome pressure vessels (buoyant structures) because the material itself is buoyant (buoyant material). Some of other applications are as an alternative to conventional fillers and additives such as silica, calcium carbonate, talc, and clay in low dielectric or thermally insulating applications.

The glass bubbles can be incorporated into a wide range of polymer and resin systems and can be customized via surface treatments, material chemistry selection, density specifications, or particle size distribution, thereby being tailored to meet demanding strength, weight and electrical specifications for customers in a variety of markets.

This article comes from trelleborg edit released

Hollow glass microspheres are used in many elastomeric applications—from shoe soles and tires to hoses and wire and cable compounds, from thermoplastic elastomers to liquid silicone rubber sealants and void fillers.

Often the main benefit is weight reduction, especially important for transportation applications. Insulation, stiffening, and cycle time reductions are additional attributes afforded by hollow glass microspheres for transportation and other applications.

In general, they are used for many of the same reasons as discussed in the Thermoplastics chapter, but physical property changes are somewhat different.

This article comes from sciencedirect edit released

Newly developed porous hollow glass microspheres can be filled with absorbents to store gas and other materials. On a macro scale, these strong, reusable microspheres can be made to behave like a liquid. Applications for hydrogen storage, gas transport, gas purification and separation, sensor technologies, global-warming applications, and drug delivery systems are underway. Coatings, plates and fibers with similar properties can also be fabricated.

What looks like a fertilized egg, flows like water, gets stuffed with catalysts and exotic nanostructures and may have the potential of making the current retail gasoline infrastructure compatible with hydrogen-based vehicles of the future — not to mention also contributing to arenas such as nuclear proliferation and global warming?

This unique material, dubbed porous wall hollow glass microspheres, consists of porous hollow glass microballoons that are smaller than the diameter of a human hair. The key characteristic of these 2-100 micron spheres is an interconnected porosity in their thin outer walls that can be produced and varied on a scale of 100 to 3,000 Angstroms.

We have been able to use these open channels to fill the microballons with gas absorbents and other materials. Hydrogen or other reactive gases can then enter the microspheres through the pores, creating a relatively safe, contained, solid-state storage system.

Photographs of these hollow glass microspheres absorbent composites also reveal that the wall porosity generates entirely new nano-structures.

Another feature of the microballoons is that their mechanical properties can be altered so they can be made to flow like a liquid. This suggests that an existing infrastructure that currently transports, stores and distributes liquids such as the existing gasoline distribution and retail network can be used. This property and their relative strength also make the porous wall hollow glass microspheres suitable for reuse and recycling.

This article comes from sciencedaily edit released

Hollow glass microspheres made of glass, polymer, or crystal material have been largely used in many application areas, extending from paints to lubricants, to cosmetics, biomedicine, optics and photonics, just to mention a few.

Here the focus is on the applications of hollow glass microspheres in the field of energy, namely covering issues related to their use in solar cells, in hydrogen storage, in nuclear fusion, but also as high-temperature insulators or proppants for shale oil and gas recovery.

An overview is provided of the fabrication techniques of bulk and hollow glass microspheres, as well as of the excellent results made possible by the peculiar properties of hollow glass microspheres. Considerations about their commercial relevance are also added.

This article comes from ncbi edit released

Our proprietary process allows us to deposit precisely controlled amounts of sliver (and other metals including gold, palladium, iridium, etc.) onto lightweight hollow glass microspheres, thus producing highly reflective materials with the conductivity of the precious metals but without the high cost or weight. Further research has resulted in materials which can absorb electromagnetic energy instead of simply reflecting it.

Hollow glass microspheres coated with silver, gold and other Alloys are lightweight, highly reflective, inexpensive and can be easily customized to the specific requirements of the customer.

From water or solvent based paints, caulks, tapes, fabric, sheets, plastics and metals, hollow glass microspheres have proven their effectiveness in a myriad or environments and applications throughout the World.

High performance, hollow glass microspheres and extremely reflective, lightweight, low cost conductive EMI shielding materials are available today.

This article comes from cenotechnologies edit released

If low-density closed-cell foams are used deep in the sea, the high hydrostatic pressures either compress the foam, or fracture the cell faces, so the foam loses its buoyancy. Consequently syntactic foams are used for buoyancy at depth. These contain hollow glass microspheres in a polymer matrix, and have a density less than that of water.

When closed-cell rigid PU foams are subjected to high water pressures, the cell faces fail and the water enters the structure. Mondal and Khakhar showed the pressure vs. loss of buoyancy graph for a foam of density circa 150 kgm−3 was a function of the surfactant used in the foaming process, hence of the thickness (strength) of the cell faces. In a subsequent article they modelled the breakdown process and showed that the threshold pressure for hydraulic collapse occurred when 9% of the cell faces had fractured.

This article comes from sciencedirect edit released